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We study mode locking in a canonical model of gradient frequency neural networks under periodic forcing.
The canonical model is a generic mathematical model for a network of nonlinear oscillators tuned to a range
of distinct frequencies. It is mathematically more tractable than biological neuron models and allows close
analysis of mode-locking behaviors. Here we analyze individual modes of synchronization for a periodically
forced canonical model and present a complete set of driven behaviors for all parameter regimes available in
the model. Using a closed-form approximation, we show that the Arnold tongue (i.e., locking region) for k : m
synchronization gets narrower as k and m increase. We find that numerical simulations of the canonical model
closely follow the analysis of individual modes when forcing is weak, but they deviate at high forcing amplitudes
for which oscillator dynamics are simultaneously influenced by multiple modes of synchronization.
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I. INTRODUCTION

Mode locking is a general phenomenon found in nonlinear
physical and biological systems. It refers to the synchroniza-
tion of oscillations (or modes), with k cycles of one oscillation
locked to m cycles of another where k and m are natural
numbers [1–3]. Under periodic forcing, nonlinear systems
resonate not only at the forcing frequency but also at its
harmonics, subharmonics, and integer ratios. In neuroscience,
mode locking is observed in periodically stimulated neurons
such as squid giant axons [4,5], heart cells [6,7], and pyloric
pacemaker neurons [8], which show multiple ratios of locking
for varying stimulation frequencies and amplitudes. The dy-
namics of mode locking has been studied in neuron models of
various levels of biophysical detail and abstraction, such as the
Hodgkin-Huxley model [9,10], the FitzHugh-Nagumo model
[11,12], the Izhikevich model [13], and the integrate-and-fire
model [14,15].

Mode locking has been suggested to be an important
mechanism for auditory neural processing. Acoustic signals
such as speech and music include a wide range of frequencies
that carry functionally relevant information. The auditory
system transforms them into spatiotemporal patterns of neural
activities by processing them through tonotopically organized
neural networks [16]. It has been shown that auditory neurons
mode lock to acoustic stimulation [17,18], and human audi-
tory brainstem responses include various mode-locking ratios
to stimulus frequenices [19]. Mode locking in the auditory
system was recently proposed as a basis for the perception
of pitch [20], harmony [21,22], tonality [23,24], and rhythm
and meter [25–27], which have been traditionally related to
frequency ratios (see Sec. IV B for more discussion).

In this paper, we study mode locking in a canonical model
of a gradient frequency neural network (GrFNN, pronounced
“griffin”), which is a generic mathematical model of tono-
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topically organized nonlinear neural oscillators [28,29]. It is
a canonical model in the sense that a family of biophysically
detailed models can be transformed to it via a near-identity
change of variables if they satisfy certain assumptions [30].
Thus, the canonical model retains the general properties
shared by the detailed models while being mathematically
more tractable. The canonical model provides a mathematical
framework for building individual realizations with different
architectures. Individual GrFNN models can have multiple
layers of oscillators that are driven by external signals and
connected to other oscillators in the same and/or different
layers, and the connections can be either fixed or plastic (e.g.,
[22,27]). GrFNN models have been used to explain auditory
neurophysiological data [31,32] as well as behavioral data on
music perception [22,24,27].

Here we perform a dynamical systems analysis of the
canonical model under periodic forcing. To analyze driven be-
haviors closely, we study individual oscillators that are driven
by a common signal but are not coupled to each other [33].
Our previous analysis of phase locking (or 1:1 locking) to
external forcing showed that the canonical model has multiple
parameter regimes that exhibit distinct autonomous and driven
behaviors [29]. The goal of the present study is to identify
the conditions for stable mode locking for different parameter
regimes of the canonical model, and for mode-locking ratios
other than 1:1. Unlike biological neuron models, the canonical
model allows separate analysis of individual mode-locking
ratios because they are represented by different terms in the
equation. Below we first describe the canonical model and
explain the methods of analysis. Then, we will present the
analysis of individual modes and compare it to the numerical
simulations of the canonical model.

II. MODEL AND METHODS

A. Canonical model of gradient frequency neural networks

A GrFNN is a network of neural oscillators tuned to a
range of distinct frequencies. A canonical model of GrFNNs
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consisting of oscillators poised near an Andronov-Hopf bifur-
cation or a Bautin bifurcation [28] is given by

żi = zi

(
ai + bi|zi|2 + εdi|zi|4

1 − ε|zi|2
)

+ RTi, (1)

where zi is the complex-valued state of the ith oscillator in the
network (subscript i = 1, . . . , N), ai = αi + iωi, bi = β1i +
iδ1i, di = β2i + iδ2i (αi, ωi, β1i, δ1i, β2i, δ2i ∈ R; i denotes
the imaginary unit), and RTi is the sum of input terms (see
below). The parameters αi, β1i, and β2i determine the intrinsic
amplitude dynamics of the ith oscillator; ωi is its natural
frequency; δ1i and δ2i determine the dependence of intrinsic
frequency on amplitude; and ε > 0 represents the strength of
coupling in the system [34]. As a generic model of neural
oscillations, the canonical model represents periodic spikes of
neurons as sinusoidal oscillations in the complex plane.

The input to the ith oscillator xi can include both an
external signal si(t ) and coupling from other oscillators,

xi = si(t ) +
N∑
j �=i

ci jz j,

where ci j is the coupling coefficient [28]. A GrFNN model
can include multiple layers of oscillators, and each oscillator
can be connected to other oscillators in the same and/or
different layers [22,27]. Here we assume xi = si(t ) (i.e., no
coupling between oscillators) to focus on the dynamics of
periodically forced oscillators. We drop the subscript i since
we analyze individual oscillators driven by external forcing in
isolation. Also, for the simplicity of analysis, we assume that
the intrinsic frequency of an oscillator does not depend on its
amplitude (i.e., δ1i = δ2i = 0). Then, Eq. (1) is rewritten as

ż = z

(
α + iω + β1|z|2 + εβ2|z|4

1 − ε|z|2
)

+ RT. (2)

Since the last intrinsic term (with the coefficient β2) is a
geometric series of high-order terms, the system is bounded
only when β2 < 0 and |z| < 1/

√
ε.

RT is a sum of resonant terms, which are monomials that
capture different modes of synchronization of the oscillator
and the input. When input frequency is not known, the canon-
ical model includes all possible resonant monomials. Depend-
ing on the actual relationship between the oscillator’s natural
frequency and the input frequency, only some of the terms in
RT become resonant and affect the long-term dynamics of the
oscillator while the influence of other terms is averaged out
over long timescales (see [28] for more detailed discussions).

A form of RT for an external signal x(t ) including a single
(but unknown) frequency [28] is given by

RT = x + √
εxz̄ + εxz̄2 + ε

√
εxz̄3 + · · ·

+ √
εx2 + εx2z̄ + ε

√
εx2z̄2 + ε2x2z̄3 + · · ·

+ εx3 + ε
√

εx3z̄ + ε2x3z̄2 + ε2√εx3z̄3 + · · ·
+ ε

√
εx4 + ε2x4z̄ + ε2√εx4z̄2 + ε3x4z̄3 + · · ·

= (x + √
εx2 + εx3 + ε

√
εx4 + · · · )

× (1 + √
εz̄ + εz̄2 + ε

√
εz̄3 + · · · )

= x

1 − √
εx

· 1

1 − √
εz̄

. (3)

Note that RT is expressed as a product of two geometric
series which converge when |x| < 1/

√
ε and |z| < 1/

√
ε,

respectively. Each monomial in RT, which can be expressed
as

RTk:m = ε (k+m−2)/2xkz̄m−1,

where k and m are natural numbers, represents a different
mode of synchronization in the integer ratio of k : m. Thus, the
resonant monomial for k = 1 and m = 1 (phase locking) is x,
a linear term of the signal only. This term dominates oscillator
dynamics when the ratio of the oscillator’s natural frequency
and the signal frequency is close to 1:1.

In this paper, we first analyze individual modes of synchro-
nization separately by examining a canonical oscillator with a
single resonant monomial for k : m locking,

ż = z

(
α + iω + β1|z|2 + εβ2|z|4

1 − ε|z|2
)

+ ε (k+m−2)/2xkz̄m−1,

(4)

where x(t ) = Feiω0t is an external sinusoidal signal. An anal-
ysis of phase locking (k = 1, m = 1) is given elsewhere
[29], and here we focus on harmonic (k � 2, m = 1) and
subharmonic (k = 1, m � 2) locking. Then, we compare the
analysis of individual modes with the behavior of canonical
oscillators when RT includes the infinite series of resonant
monomials in Eq. (3).

B. Analysis of mode-locking behavior

To analyze mode locking of a canonical oscillator, we
transform Eq. (4) to the polar coordinates of (r, ψ ),

ṙ = αr + β1r3 + εβ2r5

1 − εr2
+ ε (k+m−2)/2F krm−1 cos ψ,

ψ̇ = � − mε (k+m−2)/2F krm−2 sin ψ, (5)

where z = reiφ, ψ = mφ − kω0t is the relative phase, and
� = mω − kω0 is the frequency difference. The existence of
a stable fixed point in (r, ψ ) indicates that the oscillator can
mode lock to the input signal in the k : m ratio, with k cycles
of the oscillator locked to m cycles of the signal.

The goal of this analysis is to determine the conditions for
stable mode locking, which depend on three factors: intrinsic
parameters (α, β1, β2, and ε), input parameters (� and F ),
and the ratio of mode locking (k and m). A previous analysis
of the canonical model revealed that the regimes of intrinsic
parameters can be categorized into four groups that exhibit
qualitatively distinct autonomous and driven behaviors [29].
As shown in Fig. 1 and Table I, each group of parameter
regimes has amplitude vector fields of a distinct topology.
The first group, represented by the critical Hopf regime (α =
0, β1 < 0), has the spontaneous amplitude of zero (i.e., r = 0
is the sole attractor when F = 0) due to dr/dt decreasing
monotonically as a function of r [Fig. 1(a)]. (As discussed
above, β2 < 0 for all regimes.) The second group, represented
by the supercritical Hopf regime (α > 0, β1 < 0), has a
nonzero spontaneous amplitude with dr/dt increasing off the
origin and decreasing at higher amplitudes [Fig. 1(b)]. The last
two groups include one regime each. The supercritical double
limit cycle (or DLC) regime (α < 0, β1 > 0 with a positive
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FIG. 1. Autonomous amplitude vector field defined by Eq. (5)
when F = 0 for (a) the critical Hopf regime, (b) the supercritical
Hopf regime, (c) the supercritical DLC regime, and (d) the subcritical
DLC regime. Filled and empty circles indicate stable and unstable
fixed points, respectively. Arrows indicate the direction of flow.

local maximum in dr/dt) has two spontaneous amplitudes,
one zero and one nonzero [Fig. 1(c)]. The subcritical DLC
regime (α < 0, β1 > 0 with a negative local maximum in
dr/dt) has a sole attractor at zero for autonomous behavior,
but unlike the critical Hopf regime, it shows bistable driven
behavior because of the “hump” in the vector field [Fig. 1(d)].

Here we examine the mode-locking behavior of canonical
oscillators in the four representative parameter regimes, for
different ratios of mode locking. As shown below, harmonic
locking (k � 2, m = 1) does not require a new analysis be-
cause it exhibits qualitatively the same dynamics as phase
locking (k = 1, m = 1). Thus, the present analysis focuses on
subharmonic locking (k = 1, m � 2).

The analysis of individual modes is organized as follows.
For each subharmonic ratio of interest, we examine the four
regimes of intrinsic parameters listed above as to whether a
canonical oscillator mode locks to a given sinusoidal signal of

TABLE I. Groups of intrinsic parameter regimes with distinct
autonomous and driven behaviors. β2 < 0 for all regimes.

Group α β1 Local extremaa Regime

1 0 0 None
0 − ” Critical Hopf
− 0 ”
− − ”
− + ”

2 0 + Positive max
+ 0 ”
+ − ” Supercritical Hopf
+ + ”

3 − + Negative min, Supercritical DLC
positive max

4 − + Negative min, Subcritical DLC
negative max

aLocal extrema of dr/dt in the autonomous amplitude vector field
defined by Eq. (5) when F = 0 (see Fig. 1).

frequency ω0 and amplitude F . This is done by identifying the
regions of the (�, F ) space where stable nonzero fixed points
(r∗, ψ∗) exist (the stability regions are called Arnold tongues).
The methods for analysis and numerical simulation are given
below.

1. Stability analysis of fixed points

For a given frequency difference � and input amplitude
F , we examine whether a canonical oscillator mode locks to
the external input or not by performing a stability analysis
of fixed points. First, we get fixed points (r∗, ψ∗) by solving
the steady-state equations ṙ = 0 and ψ̇ = 0 for Eq. (5). By
eliminating ψ∗, we get(

α + β1r∗2 + εβ2r∗4

1 − εr∗2

)2

+
(

�

m

)2

= εk+m−2F 2kr∗2m−4,

(6)

which is expanded into a polynomial equation of r∗ of the
order eight if m � 4 or 2m if m � 5. We solve this equation by
numerical root finding. Then, we determine the linear stability
of each fixed point (i.e., if it is a stable or unstable node, a
stable or unstable spiral, or a saddle point) by evaluating the
Jacobian matrix of Eq. (5) [29,35].

2. Stability of zero

It is obvious from Eq. (4) that z = 0 is always a fixed
point for m � 2 regardless of the external input x. This is
an important difference from m = 1 for which zero is not
a fixed point unless F = 0. Since phase is indeterminate at
zero, the stability of the zero solution only requires r∗ = 0 to
be attracting. Also, the linear stability analysis at zero may
be indecisive when the linear coefficient α is zero. Thus,
the linear stability analysis described above is not always
adequate for determining the stability of the zero solution. We
examine each case closely and choose appropriate methods of
analysis as described in Sec. III B.

3. Calculation of Arnold tongue boundary

An Arnold tongue is the region of a parameter space in
which a forced system mode locks to the input at a certain
integer ratio [36,37]. In this paper, we identify Arnold tongues
for canonical oscillators in the input parameter space (�, F ).
The stability analysis described above finds Arnold tongues by
examining a dense array of points in (�, F ) for the existence
of stable nonzero fixed points. Additionally, we corroborate
this analysis by identifying the border of Arnold tongues with
an alternative method.

We cannot solve Eq. (6) analytically, but we can show how
many real roots it has by treating them as intersections of the
following two functions:

y1 =
(

α + β1X + εβ2X 2

1 − εX

)2

,

y2 = εk+m−2F 2kX m−2 −
(

�

m

)2

, (7)

where X ≡ r∗2. Note that y1 depends on the intrinsic param-
eters only, whereas y2 depends on the input parameters. We
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identify the border of Arnold tongues for subharmonic locking
by numerically calculating the frequency difference � for
which y1 and y2 are tangent to each other. This is the border
for the existence of fixed point(s), but it is also the border for
stable mode locking because, as shown in Sec. III B, there
is always one stable fixed point if one or more fixed points
exist. The Arnold tongues for harmonic locking have the same
properties as those for phase locking, a detailed analysis of
which is given elsewhere [29].

4. Numerical integration

In addition to the steady-state analyses described above, we
used numerical integration to examine non-steady-state tra-
jectories and to confirm analytic results. We used the GrFNN
Toolbox [38] to solve the canonical model by the Runge-Kutta
fourth-order method with a fixed time step. The time step
for each simulation was chosen so that the sampling rate is
20 times the highest frequency in the model (either the input
frequency or the highest natural frequency).

To identify the Arnold tongues for the canonical model
with the infinite-series RT, we ran a one-layer GrFNN model
multiple times for different forcing amplitudes and computed
the average instantaneous frequencies of the oscillators after
initial transients. This gave us a two-dimensional matrix of
average instantaneous frequencies, with the dimensions of
natural frequency ω and forcing amplitude F . A point in the
(ω, F ) space was deemed part of an Arnold tongue (1) if
the average instantaneous frequency was close to an integer
ratio of the input frequency, and (2) if it was close to the
instantaneous frequencies of its neighbors in the parameter
space (see Sec. IV C). An instantaneous frequency was judged
to be “close” to a target frequency if their distance was
smaller than a half of the distance between adjacent natural
frequencies. Distances between frequencies were measured in
log difference because the natural frequencies were equally
spaced on a logarithmic scale.

III. ANALYSIS OF INDIVIDUAL MODES

A. Harmonic locking (k >1, m = 1)

When m = 1, a canonical oscillator with a single-
monomial input is governed by

ż = z

(
α + iω + β1|z|2 + εβ2|z|4

1 − ε|z|2
)

+ ε (k−1)/2xk .

When x = Feiω0t , the monomial is written as

x′(t ) = ε (k−1)/2xk = ε (k−1)/2F keikω0t ,

which can be considered an external signal of amplitude
ε (k−1)/2F k and frequency kω0. Since the monomial is a linear
term of an external signal only, the model is equivalent to
a canonical oscillator with a monomial for k = 1 and m =
1 (phase locking), but for the new input x′(t ). A detailed
analysis is given elsewhere for canonical oscillators phase
locking to external forcing [29], and hence harmonic locking
does not require a new analysis. By the same token, mode
locking at the integer ratio of k : m (k � 2, m � 2) exhibits
the same dynamical properties as subharmonic locking at
1 : m, which we discuss below.

B. Subharmonic locking (k = 1, m >1)

1. Second subharmonic (m = 2)

Subharmonic locking in canonical oscillators is different in
important ways for m = 2 from other subharmonic numbers.
Also, the equations for m = 2 are more tractable and allow
closer analysis. Let us first examine the properties of mode
locking that are common to all parameter regimes and then
discuss each regime for its distinct properties.

When m = 2, Eq. (5) is rewritten as

ṙ = αr + β1r3 + εβ2r5

1 − εr2
+ (

√
εF )kr cos ψ, (8)

ψ̇ = � − 2(
√

εF )k sin ψ. (9)

Note that Eq. (9) does not include oscillator amplitude r or
intrinsic parameters α, β1, and β2. Thus, the dynamics of
relative phase ψ is independent of amplitude dynamics and
is identical across different regimes of intrinsic parameters.

Equation (9) is a well-known equation for a nonuniform
oscillator known as the Adler equation [35,39], and its simple
form allows a close analysis of phase dynamics. First, the
steady-state equation ψ̇ = 0 indicates that the steady-state
solution

sin ψ∗ = �

2(
√

εF )k

exists if

|�| � 2(
√

εF )k, (10)

which defines the locking region for ψ in the (�, F ) plane
[see the red dashed lines in panel (a) of Figs. 2–5]. Second,
we can solve Eq. (9) analytically and express ψ as an explicit
function of time [39] (see also [40]). Inside the locking region,
relative phase approaches a steady-state value monotonically,
indicating stable mode locking. Outside the locking region,
relative phase does not converge but makes full rotations with
a bottleneck near π

2 if � > 0 or near −π
2 if � < 0. As shown

below, however, the locking region for ψ can be different
from the Arnold tongue, defined here as the region with stable
nonzero fixed points, because r∗ = 0 can be the only stable
fixed point in some part of the region with stable ψ∗.

The stability of the zero solution for m = 2 also allows
a close analysis. Equation (8) defines a vector field and
determines whether r increases or decreases at a given value
of r. Inside the locking region where stable ψ∗ exists, the
linear coefficient of r in the right-hand side of Eq. (8), α +
(
√

εF )k cos ψ , approaches a steady-state value, and its sign
determines the stability of the zero solution (stable if negative
and unstable if positive) because the linear term dominates
the equation when r ≈ 0. Since cos ψ∗ > 0 for stable ψ∗,
zero is unstable if α � 0 regardless of ψ∗. For α < 0, zero
is stable if |α| > (

√
εF )k (weak forcing) regardless of ψ∗. If

|α| � (
√

εF )k (strong forcing), zero is stable when

|�| > 2
√

(
√

εF )2k − α2, (11)

because cos ψ∗ =
√

1 − sin2 ψ∗ for stable ψ∗. Equation (11)
defines the boundary between the “NZ/Z” region (where
nonzero and zero attractors coexist) and the “NZ” region
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FIG. 2. 1:2 mode locking of a critical Hopf oscillator (α =
0, β1 = −0.5, β2 = −1, ε = 1). (a) The Arnold tongue bounded by
black solid lines obtained with Eq. (7) and the locking region for ψ

bounded by red dashed lines given by Eq. (10) shown with regions
of the (�, F ) space labeled by attractor set (NZ: stable nonzero fixed
point; Z: stable zero). See Fig. 10 for the color scheme for all attractor
sets. (b) The stability of nonzero fixed points (r∗, ψ∗) for F = 0.5.
Orange color indicates stable nodes. (c) Trajectories in (r, ψ ) starting
from different initial conditions when the driven oscillator is inside
the locking region (� = 0.5, F = 0.5). Filled and empty red circles
show stable and unstable fixed points, respectively. (d) Trajectories
outside the locking region (� = 2, F = 0.5). Horizontal and vertical
dashed lines indicate the parameter values used in other panels
identified with letter labels.

(where only a nonzero attractor exists) in Figs. 4(a) and 5(a).
The linear stability analysis of the zero solution is consistent
with this analysis and shows that zero is a node when it is
stable and a saddle point when unstable. This is expected
given that ψ approaches ψ∗ monotonically.

Outside the locking region where ψ rotates, the stability
of the zero solution can be determined by integrating Eq. (8)
while ψ makes one 2π rotation after a small perturbation from
zero. Since the trajectory of ψ for the solution of Eq. (9) is
symmetrical about ±π

2 [39], the integral of cos ψ evaluated
over one period is zero. Thus, we find that for small enough
perturbations, oscillator amplitude is attracted back to zero if
the lowest-order intrinsic term has a negative coefficient. This
is when a spontaneous amplitude of the oscillator is zero (see
Fig. 1). Thus, zero is stable outside the locking region for
the critical (α = 0, β1 < 0) and both DLC (α < 0, β1 > 0)
regimes and unstable for the supercritical Hopf regime (α >

0, β1 < 0) [see panel (a) of Figs. 2–5].
a. Critical Hopf regime. A stability analysis of fixed points

shows that a critical Hopf oscillator always has one nonzero
fixed point inside the locking region for ψ given by Eq. (10)
[see Fig. 2(a)], and the fixed point is always a stable node
[Figs. 2(b) and 2(c)]. Thus, the Arnold tongue (bounded
by black solid lines) coincides with the region with stable
ψ∗ (bounded by red dashed lines). As discussed above, the
zero solution is unstable inside the locking region because
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FIG. 3. 1:2 mode locking of a supercritical Hopf oscillator (α =
0.5, β1 = −1, β2 = −1, ε = 1). See Fig. 2 for a detailed caption.
(a) The Arnold tongue and the locking region for ψ shown with
regions of (�, F ) labeled by attractor set (NZ: stable nonzero fixed
point; R: stable limit cycle or rotation). (b) The stability of nonzero
fixed points for F = 0.4 (orange: stable node, blue: saddle point; a
hint for the grayscale version: the node has a higher amplitude than
the saddle when both exist for given �) and (c) for F = 0.7. (d)
Trajectories in (r, ψ ) inside the locking region (� = 1.3, F = 0.7)
and (e) outside the locking region (� = 1.6, F = 0.7). The red
closed orbit indicates a limit-cycle attractor.

α = 0, and it is stable outside the locking region because the
spontaneous amplitude is zero [see Figs. 2(a), 2(c), and 2(d)].

b. Supercritical Hopf regime. Inside the Arnold tongue,
which coincides with the region with stable ψ∗, a supercritical
Hopf oscillator can have up to two nonzero fixed points,
and one of them is always a stable node [Figs. 3(b) and
3(c)]. A saddle-node bifurcation on invariant circle (or SNIC
bifurcation) occurs at the mode-locking boundary where a
stable node and a saddle point collide and disappear leaving
a stable limit cycle that encompasses the origin [Figs. 3(d)
and 3(e)]. Thus, outside the locking region, relative phase
makes 2π rotations while amplitude fluctuates around the
spontaneous amplitude. Zero is an unstable fixed point both
in and out of the locking region due to positive α as discussed
above.

c. Supercritical DLC regime. Inside the Arnold tongue, a
supercritical DLC oscillator can have up to four fixed points,
but only one is stable which is always a node [Figs. 4(b)–4(d)].
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FIG. 4. 1:2 mode locking of a supercritical DLC oscillator (α =
−0.5, β1 = 2, β2 = −0.5, ε = 1). See Fig. 2 for a detailed caption.
(a) The Arnold tongue and the locking region for ψ shown with
regions of (�, F ) labeled by attractor set (NZ: stable nonzero fixed
point; Z: stable zero; R: stable limit cycle or rotation). (b) The
stability of nonzero fixed points for F = 0.2 (orange: stable node;
green: unstable node; blue: saddle point; for the grayscale version:
when there are four fixed points for given �, the one with the
highest amplitude is a stable node, followed by a saddle, an unstable
node, and another saddle), (c) for F = 0.4, and (d) for F = 0.7. (e)
Trajectories in (r, ψ ) inside the locking region (� = 1.35, F = 0.7),
(f) just outside the locking region (� = 1.45, F = 0.7), and (g)
further outside (� = 1.6, F = 0.7). The red closed orbit indicates
a stable limit cycle.

A saddle-node bifurcation occurs at the locking boundary,
but for strong forcing it does not leave a stable limit cycle
(i.e., not a SNIC bifurcation), making zero a global attractor
[see Figs. 4(e) and 4(f), and the narrow region labeled Z in
Fig. 4(a)]. Further away from the locking boundary, a stable
limit cycle appears around stable zero indicating a double
limit cycle bifurcation in (r, ψ ) [Figs. 4(f) and 4(g)]. For
weaker forcing, a stable limit cycle appears right outside
the locking boundary, indicating a SNIC bifurcation. Zero
is always stable outside the locking region because α < 0.
Inside, it is a local attractor in the region of weak forcing or
large frequency difference [labeled NZ/Z in Fig. 4(a)], which
is given by Eq. (11).

d. Subcritical DLC regime. Figure 5(a) shows that the
Arnold tongue (bounded by the black solid lines) for a
subcritical DLC oscillator is lifted off F = 0 and does not
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FIG. 5. 1:2 mode locking of a subcritical DLC oscillator (α =
−0.5, β1 = 1.1, β2 = −0.5, ε = 1). See Fig. 2 for a detailed cap-
tion. (a) The Arnold tongue and the locking region for ψ shown
with regions of (�, F ) labeled by attractor set (NZ: stable nonzero
fixed point; Z: stable zero). (b) The stability of nonzero fixed points
for F = 0.3 (orange, higher amplitude: stable node; blue, lower
amplitude: saddle point) and (c) for F = 0.7. (d) Trajectories in
(r, ψ ) well inside the locking region (� = 0.7, F = 0.7), (e) just
inside the locking region (� = 1.2, F = 0.7), and (f) outside the
locking region (� = 1.7, F = 0.7).

coincide with the locking region for ψ (the red dashed lines)
because zero is a global attractor for weak forcing. Inside the
Arnold tongue, a subcritical DLC oscillator can have up to
two nonzero fixed points, one of which is always a stable
node [Figs. 5(b) and 5(c)]. Zero is stable in the region given
by Eq. (11). A saddle-node bifurcation occurs at the locking
boundary, outside which zero is the only attractor.

Figure 5 suggests that zero is stable inside the Arnold
tongue when a nonzero saddle point exists. Moving from the
NZ region to the NZ/Z region in Fig. 5(a), zero gains stability
as a saddle point separates from it [Figs. 5(c)–5(e)]. Note that
the stable manifold of the saddle serves as the basin boundary
for the zero and nonzero attractors [Fig. 5(e)]. The same
relationship is observed for the supercritical DLC regime:
Zero is stable inside the locking region when a nonzero saddle
point exists (Fig. 4). However, this does not apply to the
supercritical Hopf regime for which zero is unstable with or
without a nonzero saddle (Fig. 3). It appears that this rule
holds for the regimes where a spontaneous amplitude is zero
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FIG. 6. 1:3 mode locking of a critical Hopf oscillator (α =
0, β1 = −0.5, β2 = −1, ε = 1). See Fig. 2 for a detailed caption.
(a) The Arnold tongue shown with regions of (�, F ) labeled by
attractor set (NZ: stable nonzero fixed point; Z: stable zero). (b) The
stability of nonzero fixed points (r∗, ψ∗) for F = 0.7 (orange, higher
amplitude: stable node; blue, lower amplitude: saddle point). (c)
Trajectories in (r, ψ ) when � = 0 (F = 0.7), (d) inside the locking
region with � �= 0 (� = 0.6, F = 0.7), and (e) outside the locking
region (� = 1.2, F = 0.7).

(i.e., zero is an attractor when F = 0). The critical Hopf
regime satisfies this rule because zero is unstable inside the
Arnold tongue where no nonzero saddle exists (Fig. 2). We
show below that the same rule holds for m � 3.

2. Third subharmonic (m = 3)

Unlike m = 2, the phase dynamics for m = 3 is not in-
dependent of amplitude dynamics because the differential
equation for ψ includes r [see Eq. (5)]. Hence, the closed-
form analysis done for m = 2 is unavailable for m = 3, and
here we determine the mode-locking behavior of canonical
oscillators by analyzing the stability of fixed points and ex-
amining trajectories in the phase space.

a. Critical Hopf regime. Inside the Arnold tongue, a crit-
ical Hopf oscillator shows bistability with zero and nonzero
attractors except when � = 0 for which zero is unstable
(Fig. 6). Note that zero is stable inside the locking region when
a nonzero saddle point exists, satisfying the rule found for
m = 2 (see Sec. III B 1 d). A saddle-node bifurcation occurs at
the locking boundary, outside which zero is the only attractor
[Figs. 6(b), 6(d), and 6(e)].

b. Supercritical Hopf regime. The mode-locking behavior
of a supercritical Hopf oscillator for m = 3 is basically iden-
tical to the behavior for m = 2. It has a nonzero attractor (a
stable node) inside the locking region, and a stable limit cycle
emerging via a SNIC bifurcation is the only attractor outside
the locking boundary (Fig. 7). Zero is an unstable fixed point
in the entire (�, F ) space. The only difference from m = 2 is
that a nonzero saddle always exists inside the locking region
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(a) (b)

FIG. 7. 1:3 mode locking of a supercritical Hopf oscillator (α =
0.5, β1 = −1, β2 = −1, ε = 1). See Fig. 2 for a detailed caption.
(a) The Arnold tongue shown with regions of (�, F ) labeled by
attractor set (NZ: stable nonzero fixed point; R: stable limit cycle
or rotation). (b) The stability of nonzero fixed points for F = 0.5
(orange, higher amplitude: stable node; blue, lower amplitude: saddle
point).

[Fig. 7(b); cf. Figs. 3(b) and 3(c)], but this does not cause any
qualitative difference in mode-locking behavior.

c. Supercritical DLC regime. There are two main differ-
ences for a supercritical DLC oscillator with m = 3 compared
to m = 2. First, zero is always stable in and out of the Arnold
tongue [Fig. 8(a); cf. Fig. 4(a)]. Along with the attractor at
zero, a stable node exists inside the locking region, whereas
a limit-cycle attractor (rotation) exists outside the locking
region. The stability of zero in the entire Arnold tongue
can be related to the observation that a nonzero saddle does
not disappear for strong forcing when m = 3 [Fig. 8(b); cf.
Fig. 4(d)]. A second difference from m = 2 is that a SNIC
bifurcation occurs at the locking boundary regardless of forc-
ing amplitude. Thus, rotation is always an attractor along with
stable zero outside the locking boundary [i.e., no Z region in
Fig. 8(a); cf. Fig. 4(a)].

d. Subcritical DLC regime. Zero is a local attractor in the
entire Arnold tongue for a subcritical DLC oscillator when
m = 3 [Fig. 9(a); cf. Fig. 5(a)], which can be explained by the
presence of a nonzero saddle point [Fig. 9(b); cf. Fig. 5(c)].
Like m = 2, zero is a global attractor outside the tongue.
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FIG. 8. 1:3 mode locking of a supercritical DLC oscillator (α =
−0.5, β1 = 2, β2 = −0.5, ε = 1). See Fig. 2 for a detailed caption.
(a) The Arnold tongue shown with regions of (�, F ) labeled by
attractor set (NZ: stable nonzero fixed point; Z: stable zero; R: stable
limit cycle or rotation). (b) The stability of nonzero fixed points
for F = 0.7 (orange, higher amplitude: stable node; blue, lower
amplitude: saddle point). Similar to m = 2, there can be up to four
nonzero fixed points for weaker forcing [see Figs. 4(b) and 4(c)].
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FIG. 9. 1:3 mode locking of a subcritical DLC oscillator (α =
−0.5, β1 = 1.1, β2 = −0.5, ε = 1). See Fig. 2 for a detailed cap-
tion. (a) The Arnold tongue shown with regions of (�, F ) labeled by
attractor set (NZ: stable nonzero fixed point; Z: stable zero). (b) The
stability of nonzero fixed points (r∗, ψ∗) for F = 0.5 (orange, higher
amplitude: stable node; blue, lower amplitude: saddle point).

3. Summary: Subharmonic locking

Figure 10 compares the Arnold tongues for all four rep-
resentative regimes of intrinsic parameters for m = 2, 3, and
4. The figure shows that the set of attractors available in the
regions of (�, F ) is identical for m = 3 and m = 4. We find
that all m � 3 share the same dynamics of mode locking,
with m = 2 being a special case due to the mathematical
properties discussed in Sec. III B 1 (e.g., the independence of
phase dynamics on amplitude).

The Arnold tongues for the critical Hopf regime have a
noticeable difference between m = 3 and m = 4, with the tip
of the tongue for the latter elevated above F = 0 (Fig. 10).
This happens when y2 function in Eq. (7) is of the same or
higher order of X than the lowest-order term in y1, which
is the case when m � 4 for the critical Hopf regime (α = 0,
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FIG. 10. Arnold tongues for m = 2, 3, and 4 for four represen-
tative regimes of intrinsic parameters. Black solid lines indicate the
boundary of Arnold tongues obtained with Eq. (7), and red dashed
lines show the locking regions for ψ given by Eq. (10) (for m = 2
only). Regions of the input parameter space (�, F ) are colored by
the set of attractors available at each point. For the grayscale version,
see panel (a) of Figs. 2–9 for the letter labels for attractor sets.

β1 < 0). The same rule applies to other regimes in the group
represented by the critical Hopf regime (i.e., Group 1 in
Table I). For the regimes for which the lowest-order term in y1

is a constant term (i.e., α < 0), the Arnold tongue is lifted off
F = 0 when m � 2. When a quartic term is the lowest-order
term in y1 (i.e., α = β1 = 0, β2 < 0), the Arnold tongue does
not touch the F axis when m � 6.

IV. MODE LOCKING IN GRADIENT
FREQUENCY NETWORKS

Now we study a GrFNN in which each oscillator receives
the infinite-series input in Eq. (3) so that the network can
mode lock to any input frequency (see Sec. II A). We first dis-
cuss frequency scaling for logarithmic frequency networks be-
cause logarithmic spacing is commonly used in the models of
auditory neural processing and perception [22,31,32,41,42].
Then, we compare the widths of different mode-locking re-
gions using approximations based on the analysis of individ-
ual modes. Finally, we compare the numerical simulations
of a periodically forced GrFNN model with the analysis of
individual modes.

A. Frequency scaling for logarithmic frequency networks

The analysis of individual modes showed above that canon-
ical oscillators mode lock to external forcing when frequency
difference � is small. Let � be the maximum |�| (or the
upper bound) for which nonzero mode locking is possible
for given parameter values. In other words, 2� is the width
of the Arnold tongue for a given forcing amplitude. Since
� = mω − kω0, the locking range |�| � � can be expressed
as the range of natural frequency ω for given input frequency
ω0,

kω0 − �

m
� ω � kω0 + �

m
, (12)

which is centered at k
m ω0 with the symmetrical half width of

�
m . Note that the width of the natural frequency range does not
vary with input frequency, that is, it is constant on a linear
frequency scale.

As previously shown, scaling intrinsic and input param-
eters by natural frequency makes the locking range of a
canonical oscillator increase width with natural frequency
[28,29]. This property, called the “constant-Q” characteristic,
is often desirable for oscillator networks and filter banks with
logarithmically spaced frequencies because it makes each
element in the system cover the same extent of logarithmic
frequency space.

A frequency-scaled canonical oscillator with single-
monomial input is given by

τ ż = z

(
α + 2π i + β1|z|2 + εβ2|z|4

1 − ε|z|2
)

+ ε (k+m−2)/2xkz̄m−1,

where τ = 1/ f = 2π/ω [28,29] [cf. Eq. (4)]. In polar coordi-
nates,

1

f
ṙ = αr + β1r3 + εβ2r5

1 − εr2
+ ε (k+m−2)/2F krm−1 cos ψ,

1

f
ψ̇ = �

f
− mε (k+m−2)/2F krm−2 sin ψ.
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Comparing with Eq. (5), we see that the steady-state equa-
tions ṙ = 0 and ψ̇ = 0 for a frequency-scaled oscillator are
identical to the unscaled versions except that � is replaced
with �/ f . Hence, when |�| � � is the locking range for an
unscaled oscillator, the locking range for the frequency-scaled
version is |�/ f | � � or |�| � f �, which can be expressed as

k

m + �
2π

� ω

ω0
� k

m − �
2π

(if � < 2πm),

ω

ω0
� k

m + �
2π

(if � � 2πm). (13)

Since the ratio of natural frequency and input frequency has a
fixed range, the width of locking range for a frequency-scaled
oscillator is constant on a logarithmic frequency scale.

B. Comparison of mode-locking ranges

In general, low-order mode locking at a simple frequency
ratio (i.e., with k and m being small integers) is stronger
and more stable with a wider locking region than high-order
mode locking at a more complex ratio (large k and m) [34].
This property of nonlinear resonance has been suggested to
underlie the relative consonance and dissonance of musical
intervals [21] and the tonal stability of pitches in musical
keys [23,24]. In the latter studies, the coefficient to the input
term in Eq. (4), ε (k+m−2)/2, was used as an estimate for the
stability of mode locking in the k : m ratio. Here we obtain an
approximation of mode-locking ranges based on the analysis
of individual modes presented above.

Equations (12) and (13) show the mode-locking ranges for
unscaled and frequency-scaled canonical oscillators, respec-
tively. However, it is not clear from these formulas how the
width of locking region changes with k and m because �

depends on k and m. To obtain a closed-form approximation
of �, we assume that steady-state driven amplitude r∗ is close
to the spontaneous amplitude of the oscillator, which is a
reasonable approximation for a supercritical Hopf oscillator
driven by weak forcing. Then, from the steady-state equation
ψ̇ = 0 for Eq. (5) we get

� = m(
√

εF )k (
√

εrs)m−2 sin ψ∗,

where rs is the spontaneous amplitude of the oscillator. Since
| sin ψ∗| � 1, stable ψ∗ exists when

|�| � m(
√

εF )k (
√

εrs)m−2 ≡ �′. (14)

Let us define

γ ≡ �′

m
= (

√
εF )k (

√
εrs)m−2.

Since 0 � √
εF < 1 and 0 � √

εrs < 1 when the infinite-
series RT is used (see Sec. II A), γ decreases as k and m
increase, and 0 � γ < 1 for m � 2. Using this approximation,
the width of locking range for unscaled oscillators is

2�′

m
= 2γ ,

which is the difference of the upper and lower bounds in
Eq. (12). The log-scale width of locking range for frequency-
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FIG. 11. Amplitude and relative phase of a canonical oscillator
with the infinite-series input (thick blue lines) compared with a
canonical oscillator with the 1:2 single-monomial input (thin red
lines). The oscillators have identical intrinsic parameters (the natural
frequency is 0.5 Hz), and they are driven by the same sinusoidal input
of 1 Hz. The relative phase was computed for 1:2 locking, that is,
ψ = 2φ − θ where φ is oscillator phase and θ is input phase.

scaled oscillators is approximated to be

logb

m + �′
2π

m − �′
2π

= logb
2π + γ

2π − γ
,

which is the difference of the logarithms of the upper and
lower bounds in Eq. (13) for m � 2, where b > 0 is an
arbitrary base. Thus, the approximated width of locking range
decreases as k and m increase (because γ decreases) for both
unscaled and frequency-scaled canonical oscillators, confirm-
ing the general property of nonlinear resonance that low-order
mode locking is more stable than high-order mode locking.

C. Gradient frequency network with infinite series input

To study mode locking in the canonical model with
infinite-series input, we numerically solved a frequency-
scaled GrFNN model given by

τi żi = zi

(
α + 2π i + β1|zi|2 + εβ2|zi|4

1 − ε|zi|2
)

+ c
x

1 − √
εx

1

1 − √
εz̄i

, (15)

where τi = 2π/ωi, ωi is the natural frequency of the ith
oscillator, c is additional coupling weight, and x(t ) = Feiω0t is
sinusoidal forcing (see Sec. II B 4 for methods). As discussed
above, the infinite series of input monomials allow a canonical
oscillator to mode lock to an arbitrary input frequency.

Figure 11 compares an oscillator with the infinite-series
input with an identical oscillator with a single resonant mono-
mial. The natural frequency (0.5 Hz) and the input frequency
(1 Hz) form a ratio of 1:2, thus the monomials with k =
n and m = 2n in the series (n ∈ N) become resonant and
dominate the long-term dynamics of the oscillator. Unlike
the oscillator with the single 1:2 resonant monomial (thin red
lines), the amplitude and relative phase of the oscillator with
infinite-series input (thick blue lines) do not converge to a
fixed point due to the presence of nonresonant terms in the
series. However, the relative phase is bounded and fluctuates
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FIG. 12. Arnold tongues for a gradient frequency neural network driven by sinusoidal forcing in Eq. (15). Colored regions indicate
frequency locking at different ratios. Solid magenta lines show the Arnold tongues from the analysis of individual modes calculated with
Eq. (7), and dashed cyan lines show the closed-form approximation of locking ranges in Eq. (14). The input frequency is 1 Hz, and the
oscillators are in the supercritical Hopf regime (α = 0.9, β1 = −3, β2 = −3, ε = 1, c = 3). The Arnold tongues were obtained by running
2001 oscillators, with natural frequencies equally spaced on a log scale from 0.23 to 4.4 Hz, 1001 times for different forcing amplitudes ranging
from 0 to 0.3 (see Sec. II B 4 for methods).

around the fixed point for the single-monomial oscillator [i.e.,
the trajectory forms a libration in (r, ψ ), not a rotation (see
[29,35])]. Hence, when averaged over a long enough time
scale, the infinite-series oscillator has the same instantaneous
frequency as the single-monomial oscillator. This type of
synchronization may be called “frequency locking” instead of
mode locking [34].

Figure 12 shows the Arnold tongues for the GrFNN model
with infinite-series input in Eq. (15), identified by the time-
averaged instantaneous frequencies of the oscillators (see
Sec. II B 4 for methods). Only the tongues for low-order
resonances with k + m � 5 are displayed as colored regions.
Consistent with the analysis of individual modes, the GrFNN
model with infinite-series input has wider Arnold tongues for
low-order resonances (with small k and m) than for higher-
order resonances (larger k and m). At low forcing amplitudes,
the tongues for canonical oscillators with single-monomial in-
put (solid magenta lines; from Sec. III) match the tongues for
infinite-series input (colored regions). For stronger forcing,
the tongues for infinite-series input are tilted and deviate from
the tongues for single-monomial input, indicating that long-
term oscillator dynamics are influenced by multiple resonant
monomials for distinct mode-locking ratios. A detailed anal-
ysis of the canonical model with infinite-series RT is beyond
the scope of this paper, which we leave for future work.

Note that for k � 1 and m = 1, the tongues for infinite-
series input (colored regions in Fig. 12) are significantly wider
than the tongues for single-monomial input (magenta solid
lines) at high forcing amplitudes. This is expected given that
the oscillators are in the supercritical Hopf regime, for which a
region of frequency locking (i.e., libration) exists just outside
the mode-locking range for strong forcing [29]. As discussed
in Sec. IV B, the tongues for individual modes (magenta solid
lines) and their approximations in Eq. (14) (cyan dashed
lines) match well at low forcing amplitudes because driven
amplitudes are close to the spontaneous amplitude. They
deviate at higher forcing amplitudes for which the driven
amplitudes at locking boundaries are significantly different
from the spontaneous amplitude.

V. CONCLUSION

We examined mode locking in periodically forced gradient
frequency neural networks by analyzing a canonical model.
As in our previous analysis of 1:1 phase locking [29], we
found that the canonical model has different sets of attractors
in four representative parameter regimes. We studied individ-
ual modes of locking separately by analyzing the canonical
model with single-monomial input. We found that harmonic
locking (k � 2, m = 1) has qualitatively identical dynamics
to 1:1 phase locking. Among subharmonic ratios, m = 2 has
distinct properties from m � 3 due to the independence of
phase dynamics on amplitude. Using a closed-form approx-
imation, we showed that the width of Arnold tongue (i.e.,
locking region) for k : m mode locking decreases as k and m
increase, indicating low-order nonlinear resonances are gener-
ally more stable than higher-order ones. Finally, we examined
the Arnold tongues for the canonical model with infinite-
series input which is capable of mode locking to an arbitrary
input frequency. For weak forcing, the Arnold tongues for
infinite-series input match the tongues for single-monomial
input, but they deviate as forcing amplitude increases because
multiple input monomials affect oscillator dynamics at high
forcing amplitudes.

The analysis presented in this paper has broad implications
for neural processing and nonlinear dynamics. The canonical
model analyzed here is a generic mathematical model of tono-
topically organized neural networks, which are commonly
found in the auditory system. Thus, the properties of mode
locking found in the canonical model are relevant to auditory
neural processing and perception in general. Our previous
modeling studies showed that mode-locked resonances in
neural oscillators can explain nonlinear components in human
auditory brainstem responses to musical intervals [31], and
the perception of harmony [22], tonality [24], and rhythm and
meter in music [27]. The present analysis provides mathemat-
ical foundations to these studies. Also, by presenting the com-
plete set of driven behaviors available to the canonical model,
this study informs modeling efforts featuring the GrFNN
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model [38] as to choosing appropriate parameter regimes and
values to achieve target behaviors.

Compared to biological neuron models such as the
Hodgkin-Huxley model, the canonical model is mathemati-
cally simpler and more tractable, and hence we were able to
analyze and compare different modes of synchronization for
all parameter regimes available in the model. The thorough
analysis given in this paper can serve as a canonical refer-
ence for diverse mode-locking behaviors observed in neurons
and neuron models which are often difficult to control and
analyze (e.g., [4–7,9–12]). Lastly, since the canonical model
is a generic model of nonlinear oscillatory networks, the
present analysis is not limited to neural networks but applies

generally to multifrequency nonlinear systems consisting of
oscillatory elements poised near a Hopf bifurcation or a
Bautin bifurcation. In this light, the present study reveals
the signal processing capabilities of multifrequency nonlinear
systems by showing how they transform external signals into
spatiotemporal patterns of synchronized activities.
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